
Experience Using Formal Methods for Specifying a Multi-Agent System

Christopher Rouff, James Rash
NASA Goddard Space Flight Center

Code 588.0
Greenbelt, MD 20771

chris.rouff@gsfc.nasa.gov,
james.rash@gsfc.nasa.gov

Michael G. Hinchey
Computer Science Department
University of Nebraska-Omaha

Omaha, NE 68182
mhinchey@unomaha.edu

Abstract

The process and results of using formal methods to
specify the Lights Out Ground Operations System
(LOGOS) are presented in this paper. LOGOS is a
prototype multi-agent system developed to demonstrate
the feasibility of providing autonomy to satellite ground
operations functions at NASA Goddard Space Flight
Center (GSFC).

Following the initial implementation of LOGOS, the
development team decided to use formal methods to
check for race conditions, deadlocks and omissions. The
specification exercise revealed several omissions as well
as race conditions. After completing the specification,
the team concluded that certain tools would have made
the specification process easier.

This paper gives a sample specification of two of the
agents in the LOGOS system and examples of omissions
and race conditions found.

1. Introduction

Until recently, space missions have been operated
manually from ground control centers. The high costs of
satellite operations has prompted NASA and other
funding sources to seriously look into automating as
many functions as possible. A number of more-or-less
automated ground operation systems exist today, but
work continues with the goal of reducing system costs to
even lower levels.

Cost reduction can be achieved in a number of areas.
In particular, greater autonomy of satellite ground control
functions is one area that can greatly reduce overall
mission cost. LOGOS, the Lights Out Ground Operations
System [5], is a proof-of-concept system that uses a
community of autonomous software agents that work
cooperatively to perform the functions previously

undertaken by human operators who were using
traditional software tools, such as orbit generators and
command sequence planners.

Figure 1 shows the architecture of LOGOS. It consists
of ten agents that interact both with each other and with
external ground control software. The following gives a
brief description of each of the agents:

FIRE: the Fault Isolation and Resolution Expert Agent
resolves satellite anomalies;

DBIFA: the Database Interface Agent interfaces with a
database management system for storage of short term
data;

UIFA: the User Interface Agent transfers data to and
commands from the user interface;

PAGER: this is an agent that pages users when the
satellite needs attention and LOGOS is unable to
determine the needed response;

AIFA: the Archive Interface Agent stores and retrieves
telemetry and other long-term data;

MIFA: the Mission Operations Planning and Scheduling
System (MOPSS) Interface agent produces satellite
scheduling information for the other agents;

SysMMA: the System Monitoring and Management
Agent registers each of the agents in the community
and locates agents with particular abilities;

VIFA: the Visage Interface agent passes data to the
Visage visualization system to display telemetry data;

LOG: this is an agent that logs status messages from other
agents and sends them to the user interface for
display;

GIFA: the Generic Spacecraft Analyst Assistant
(GenSAA) Interface Agent interfaces with GenSAA
for transferring data to and from spacecraft.

Each of the above agents run as a separate process,
with each process having multiple threads. During
development some errors developed that we were able to
trace to race conditions. Testing for race conditions is

very difficult because certain timing conditions must exist
for them to occur, and these timing conditions may not
happen during normal testing. Because of this, normal
testing alone cannot assure that race conditions do not
exist. To determine whether other race conditions existed
in LOGOS, we turned to formal methods to model the
interaction between agents.

2. LOGOS specification

The specification of the LOGOS agents was undertaken
using Communicating Sequential Processes (CSP) [2, 4].
One advantage that we found using CSP for LOGOS was
its simple structure and how naturally it lends itself to
modeling parallel processes, of which LOGOS has many.

The CSP specification of LOGOS is based on the agent
design documents and, when necessary, inspection of the
LOGOS code. LOGOS is a proof-of-concept system so
there were several parts that were specified and designed,
but not implemented. The CSP specification reflects what
was actually implemented or would be implemented in the
near term. If a feature was not yet implemented, its
intended implementation was specified based on the
design document as it was intended to be completed in the
near term or in the second generation of LOGOS.

In the CSP specification, LOGOS is defined as a
process with agents running in parallel as independent
processes communicating through an in-house developed

software bus, called Workplace, that provides the
messaging mechanism between the agents. The definition
of LOGOS is given by:

WorkPlaceVIFA

UIFASysMMAPAGERMIFA

LOGGIFAFIREDBIFAAIFALOGOS

||||

||||||||

||||||||=

The agents produce effects by communicating via their
output channels to other agents or to the outside
environment, not by direct action. For example, to cause a
spacecraft to execute a command, an agent would send an
appropriate command via the spacecraft interface agent,
which in turn would send a command data packet to the
appropriate spacecraft-commanding software (in this case
GenSAA). Communication between the agents is
achieved via message-passing. Each message has a
unique message ID and, when appropriate, an in-reply-to
ID that references the original message to which an agent
may be replying.

Workplace is used to transport the messages between
agents. Each agent has “in” and “out” channels (see
Figure 2) connected to Workplace for sending and
receiving messages. Some of the agents are interface
agents that communicate with an outside environment
(i.e., the user interface, scheduler, pager, etc.). These
interface communications are implemented by each agent
individually and can also be thought of as having “in” and

GenSAA/

Genie

I/F Agent
AGENT COMMUNITY

Log

I/F Agent

SysMM

Agent

FIRE

Agent

Pager

I/F Agent

User

I/F Agent

MOPSS

I/F Agent

DB I/F

Agent

Archive

I/F Agent

VisAGE

I/F Agent

LOGOS

UI
USER

VisAGE

Paging

System

MOPSS

GenSAA

Data Server

GenSAA/

Genie

Control

Center

Spacecraft

= Agent

= External

 System

LOGOS

DB

= Data

 Archive

Archive

LOGOS

Log

Figure 1. LOGOS architecture

“out” channels to the agent’s environment. Agents that
do not communicate with an outside environment are
considered to have null communications over their
environment channels.

From the above, an agent is defined as:

iii EnvBusAgent ||=̂

Each agent has a uniquely defined BUS and ENV
process. The BUS process defines the inter-agent
communication and the ENV process defines how the
agent communicates with entities in the outside
environment (such as pagers, databases, and the user
interface).

Each agent also communicates over four channels: Ein,
Eout, Iin, and Iout. The Ein and Eout channels provide the
input and output to the agent’s environment in the Env
processes and the channels Iin and Iout provide the input
and output communications to the other agents via
WorkPlace in the Bus processes. When a message is
broadcast on an agent’s Iout channel, Workplace will
deliver it to the appropriate agent’s Iin channel.

Messages sent between agents contain a predefined
header and data consisting of:

• the target agent name,
• the sending agent name,
• a message ID,
• an in-reply-to message ID if appropriate,
• a message type,
• a performative, and
• combinations of parameter names and parameter

values.

For the purpose of brevity, non-essential parameters
are not included in the specification given here. In case
and if statements, a message is matched when the stated
parameters in the message are matched. In addition,
capitalized words indicate constants that are being

matched, and lower or mixed case words represent
variables that contain the indicated parameter value.
Many of the error conditions are not shown in order to
increase the readability of the specification.

3. Pager agent specification

The following is the specification of the pager agent.
The pager agent sends pages to engineers and controllers
when there is a spacecraft anomaly and the FIRE agent
cannot figure out a solution and there is no one logged on
to notify that an anomaly has occurred. The pager agent
receives requests from the user interface agent (UIFA),
gets paging information from the database agent, and,
when instructed by the UIFA, stops paging. The pager
agent is defined as:

ENVPAGERBUSPAGERPAGER _||_ˆ {}{},=

As discussed above, the Pager agent is defined as a
process, PAGER, which is also defined as two processes
running in parallel: a BUS process and an ENV process.
The first empty set in the parameter list for PAGER_BUS
represents the list of requests made to the database agent
for paging information on a particular specialist. The
second empty set represents the list of specialists that are
currently being paged. The paged parameter is a set and
not a bag, because even though someone can be paged
multiple times, a stop page command only has to be sent
one time, not the number of times the specialist was paged
(it is assumed the specialist only has one pager). Since
the pager agent initially starts out with no requests for
pages, these sets are initialized to be empty.

The above bus and environment processes for an
agent are defined in terms of their input events. The BUS
process is defined as:

um)TA,pager_n(RETURN_DAmsg if

ING BEGIN_PAG

list,text)ING,specia(START_PAG msg if

NFOGET_USER_I case

msgpager.Iin?PAGER_BUS

pager_numo_id(msg),in_reply_t
,paged,db_waiting

ee,text,paged,pagdb_waiting

,pageddb_waiting

=

=

→=

erwise oth

PAGER_BUS

NIZED)g),UNRECOGt!(head(ms pager.Iou

NG,pagee)(STOP_PAGImsg if

CTSTOP_CONTA

,pageddb_waiting

ee,paged,pagdb_waiting

→

=

Agent i

Other Agents

Environment

Eout Ein

Iin Iout

Figure 2. Channels agents communicate over.

The above specification states that the process
PAGER_BUS receives a message on its “Iin” channel (the
pager’s in channel from WorkPlace) and stores it in a
variable called “msg”. Depending on the contents of the
message, one of four different processes is executed.

If the message has a START_PAGING performative,
then the GET_USER_INFO process is called with
parameters of the type of specialist to page (pagee) and
the text to send the pagee. If the message has a
RETURN_DATA performative with a pagee’s pager
number, then the database has returned a pager number
and the BEGIN_PAGING process is executed with a
parameter containing the original message id (used as a
key to the db_waiting set) and the passed pager number.

The third type of message that the pager agent might
receive is one with a STOP_PAGING performative. This
message contains a request to stop paging a particular
specialist (stored in the pagee parameter). When this
message is received, the STOP_PAGING process is
executed with the parameter of the specialist type. If the
pager agent receives any other message than the above
three messages, an error message is returned to the sender
of the message (which is the first item of the list) stating
that the message is “UNRECOGNIZED”. After this, the
PAGER_BUS process is again executed.

The following are the definitions of the three processes
referenced above.

ged,text)},pa{(Id,pageedb_waiting

ee, text,paged,pagdb_waiting

PAGER_BUS

)DATA,pagee(),RETURN_msgId(DBIFA,Id=!ger.Iout pa

NFOGET_USER_I

∪→

=

ger_num)}{(pagee,papaged
},agee,text)/{(MsgId,pdb_waiting

umId,pager_n,paged,Msgdb_waiting

PAGER_BUS

 text=t)x g | pagee= db_waitin x, t) ! (MsgId, (

t,START) |er_num,tex(pagee,pagager.Eout! p

NGBEGIN_PAGI

∪
→

∧∈∃

=

}PAGER_BUS

)ager_num=y paged | p y) ! (pagee, (

) |r_num,STOPpagee,pageger.Eout!(pa

CONTACTSTOP

r_num)pagee,page, paged\{(db_waiting

ee,paged,pagdb_waiting

→
∈∃

=−

The GET_USER_INFO process sends a message to the
database agent over the pager’s Iout channel requesting
the pagee's pager number. After the message is sent, the
PAGER_BUS process is called with the tuple (message ID,
pagee, text) unioned with the set ``db_waiting’’ containing
the set of messages waiting for a response from the
database. Not waiting for the database to return the pager
number allows the PAGER_BUS process to receive and
process other messages while it is waiting for the database

to answer. There is also the chance that more than one
page request will come in before the first one is answered,
that is why a set is used to hold all of the pending
requests from the database. Also, since message ids are
always unique, the message id is used as the key to the
tuple.

BEGIN_PAGING sends the type of specialist to page,
the pager number, and related text over the environment
channel to the actual paging system. After this message
is sent, the PAGER_BUS process is executed with the
pagee’s tuple deleted from the “db_waiting” set and the
tuple (pagee, pager_number) added to the set of
specialists currently being paged (the set “paged”).

The STOP_CONTACT process extracts from the set
“paged” the tuple that contains the pager number for the
pagee and sends a message to the paging system with the
specialist type, the number of the pager and a command to
stop the page. Next, the pager’s BUS process is called
with the tuple (pagee, pager_number) removed from the
“paged” set.

One thing to note is that if a specialist is paged once,
then paged a second time, this information is lost since the
element (pagee, pager_number) overwrites the previous
element in the set. If in the future this becomes
unacceptable, then a bag will need to be used instead of a
set and an additional value added to the tuple to
distinguish multiple pages to the same specialist (perhaps
using the time of a page as a key).

Since the pager agent does not receive any messages
from the paging system, the PAGER_ENV process does
not need to be defined, and is therefore left undefined.

4. User interface agent specificaiton

The user interface agent (UIFA) provides a bridge
between the user interface and the LOGOS agent
community. The UIFA receives commands from the user
interface and passes those commands to the appropriate
agent. It also receives data and anomaly information from
other agents and sends that information to the user
interface.

Like the other agents, the UIFA specification consists
of a BUS and ENV process:

||UIFA_ENVUIFA_BUSUIFA }[], [],{=̂

The first two parameters for the UIFA_BUS process are
bags and are similar to the parameters used in the
PAGER_BUS process above. The first bag represents the
requests for user passwords that have been made to the
database agent and the second bag holds the names of
the users that have logged on. The reason why they are
bags and not sets is because a single user can be logged

on multiple times simultaneously. The third parameter is
the set of anomalies that are waiting to be sent to the user
interface when there are no users logged on. It is a set
because duplicate anomalies are only reported once. The
three bags/sets are initialized to empty because, when
LOGOS starts up, no users should be logged in and no
anomalies have been recorded.

4.1 UIFA BUS process

The specification of the UIFA_BUS process is:

anomalies,inlogged_ ,waiting_db

anomalieslogged_in, ing,wait_db

anomalieslogged_in, ,waiting_db

AGENT_UIFA

INTERNAL_UIFA

ˆBUS_UIFA

|

=

The above states that the UIFA_BUS process can
either be the UIFA_AGENT process or the
UIFA_INTERNAL process. The UIFA_AGENT process
defines the response UIFA makes to messages received
from other agents over the uifa.Iin channel. These
messages are requests from other agents to send the user
interface data or are responses to requests that the UIFA
made earlier to another agent. The UIFA_INTERNAL
process is used to transfer password related data from the
UIFA_ENV process to the UIFA_BUS.

The definition for the UIFA_INTERNAL process is
rather simple and is solely for transferring password
information received from the user in the UIFA_ENV
process to the database agent for validation. It also needs
to store the password information in the db_waiting
parameter for future retrieval by the UIFA_BUS process
when the database agent returns the password validation
information (as will be seen below). The
UIFA_INTERNAL process is defined as:

anomalieslogged_in,
),password,name_user(waiting_db

anomalieslogged_in,,waiting_db

UIFA_BUS

)password,name_user

,DATARETURN,DBIFA(!Iout.uifa

)password,name_user?(pass.uifa

NALUIFA_INTER

∪→

→

=

_

which states that when a user name/password tuple is
sent from the UIFA_ENV process over the uia.pass
channel, this process sends the tuple to the database
agent for validation and then calls the UIFA_BUS process
again with the (user_name, password) tuple added to the
db_waiting bag. Later, when the database agent returns
with its stored password for this user, it will be compared
with the user name and password received from the user
interface and stored in db_waiting.

The following specifies the UIFA_AGENT process and
how it handles messages received from other agents.

)_ , ,(= if

 case

anomalynewRESOLVEREQUESTmsg

ANOMALY_RESOLVE

msg?Iin.uifaAGENT_UIFA

anomaly_new,anomailes
logged_in,,waiting_db

anomalies,inlogged_,waiting_db →=

t) specialisTURN_DATA, msg = (RE if

PECIALISTRECEIVED_S

isty, specialnew_anomalanomalies,

,logged_in, db_waiting

)b_passworder_name, dN_DATA, usg = (RETUR if ms

ASSWORDRECEIVED_P
rd db_passwouser_name,
anomalies,,logged_in,db_waiting

[]_inlogged

s), anomalieUNRESOLVEDURN_DATA, f msg=(RET i

UIFA_BUS

s)D,anomalie(UNRESOLVEuifa.Eout!

ies_in,anomallogged,db_waiting

≠∧

→

[]logged_inIVITY)(BEGIN_ACT if msg=

UIFA_BUS

VITYBEGIN_ACTIuifa.Eout!

,anomalieslogged_in,db_waiting

≠∧

→

[]logged_inVITY)=(END_ACTI if msg

 UIFA_BUS

TYEND_ACTIVIuifa.Eout!

,anomalieslogged_in,db_waiting

≠∧

→

[]logged_in

ies)red_anomalATA, refer=(RETURN_D if msg

UIFA_BUS

nomalies)referred_a(REFERRED,uifa.Eout!

,anomalieslogged_in,db_waiting

≠∧

→

[]logged_inT, report)g = (REPOR if ms

 UIFA_BUS

eport)!(REPORT,r uifa.Eout

,anomalieslogged_in,db_waiting

≠∧

→

[]logged_inon)T, exceptig = (REPOR if ms

UIFA_BUS

ception)CEPTION,ex(REPORT_EXuifa.Eout!

,anomalieslogged_in,db_waiting

≠∧

→

[]logged_in

xception)er_name, eEPTION, us (USER_EXC if msg =

 UIFA_BUS

,INVALID)(user_nameuifa.Eout!

,anomalieslogged_in

),db_waitinge,y)!(user_nam(

e,y)/(user_namdb_waiting

≠∧

→

∈∃

•

[]logged_in schedule)(SCHEDULE, if msg =

UIFA_BUS

,schedule)!(SCHEDULE uifa.Eout

,anomalieslogged_in,db_waiting

≠∧

→

[]logged_inle)TA, schedu(UPDATE_DA if msg =

UIFA_BUS

edule)UPDATE,sch(SCHEDULE_uifa.Eout!

,anomalieslogged_in,db_waiting

≠∧

→

se otherwi

UIFA_BUS

ZED),UNRECOGNI(head(msg)uifa.Iout!

,anomalieslogged_in,db_waiting→

The first element of the above case statement is a
request for the user to solve an anomaly, which is
processed by UIFA_RESOLVE_ANOMALY (described
below). The rest of the messages received by the UIFA
are replies to requested data or information on events that
occurred and are simply to be passed on to the user
interface, if a user is logged on. The LOGOS requirements
document currently does not allow multiple users,
therefore keeping track of which user requested which
information and to which user anomalies should be sent
for resolution is not specified.

The case statements with the following performatives
in their case statement are information messages stating
that a particular event has occurred: BEGIN_ACTIVITY,
END_ACTIVITY, and SCHEDULE_UPDATE. The BEGIN
and END activities represent acquisition of a signal from
the satellite and the loss of that signal, respectively. The
performative SCHEDULE_UPDATE is a notice that the
satellite’s schedule has changed and a new version is
included in the message. The remainder of the messages
are all replies to requests that UIFA made to other agents
and simply pass the data on to the user interface over the
uifa.Eout channel (if a user is logged in; otherwise it is
ignored). The following is a short description of each of
the above processes, listed by their performative:

• UNRESOLVED process sends a list of anomalies
that the FIRE agent is still working on to the user
interface over the uifa.Eout channel.

• REFERRED process sends the user interface a list
of anomalies the FIRE agent has sent the user
interface that have not yet been fixed.

• BEGIN_ACTIVITY and UIFA_END_ACTIVITY
processes send a begin/end activity message on to
the user interface from the SysMAA agent.

• REPORT process sends a report from the database
to the user interface.

• REPORT_EXCEPTION process sends a report
exception message to the user interface indicating
there are no reports available.

• USER_EXCEPTION process indicates that the user
name does not exist and sends an invalid log-in
message to the user interface.

• SCHEDULE process sends a schedule from the
MOPSS agent to the user interface.

• SCHEDULE_UPDATE process sends a message to
the user interface that the schedule has been
updated.

The processes named UIFA_RESOLVE_ANOMALY,
UIFA_RECEIVED_PASSWORD, and finally the process
UIFA_RECEIVED_SPECIALIST, need to test state
information before passing data on to the user interface.
UIFA_RESOLVE_ANOMALY checks whether a user is
logged on before passing the anomaly to the user
interface. If a user is logged on, the anomaly is sent on to
the user interface. If a user is not logged on, then a user
that has the required subsystem specialty is paged. The
paging is done by:

1. Requesting the specialist type needed for this type
of anomaly from the database.

2. Once the data is received from the database, sending
the pager the specialist type to page (see also the PAGER
specification above).

3. And then waiting for the user to log in.

When a user logs in and the password is received from
the database and validated, the process checks whether
any anomalies have occurred since the last log in. If there
are anomalies, the anomaly is sent to the user interface
after the user interface has been informed that the user’s
name and password have been validated.

The following is the specification of what the UIFA
does when it receives a request to send the user interface
an anomaly.

[]

ynew_anomal,anomalieslogged_in,db_waiting

,anomalieslogged_in,db_waiting

ynew_anomalanomalies,
,logged_in,db_waiting

UIFA_BUS

nomaly) new_a

LIST,EST,SPECIADBIFA,REQUuifa.Iout(

else

 logged_in if

UIFA_BUS

ynew_anomaluifa.Eout!

OMALYRESOLVE_AN

∪→

≠

→

=

UIFA_RESOLVE_ANOMALY states that when the
UIFA receives an anomaly notice, it first checks whether
the user is logged on by checking the list of users in the
bag “logged_in”. If the user is logged on, then the
anomaly is sent over the environment channel uifa.Eout to
the user interface. If the user is not logged on, then UIFA
sends a message to the database asking it for a specialist

that can handle the given anomaly (the returned
information will later be sent to the pager).

The following is the specification as to what happens
when the specialist type is received from the database
agent.

,anomalieslogged_in,db_waiting

isty, specialnew_anomal
,,anomalieslogged_in,db_waiting

UIFA_BUS

[]logged_in if

w_anomaly)cialist,ne(PAGER,speuifa.Iout!

PECIALISTRECEIVED_S

→
=

→

=

RECEIVED_SPECIALIST states that when the name of
the specialist is received from the database, the pager is
sent the type of specialist to page. If someone has logged
on since the request to the database was made, then the
specialist is not sent to the pager and nothing further is
done (the anomaly was sent to the logged on user).

The following specifies what happens when a
password is received from the user interface:

,anomalieslogged_in

),db_waiting!(user,y)(/(user,y)db_waiting

malies(user),anologged_in
password),/(user,db_db_waiting

ssworduser,db_paanomalies,
,logged_in, db_waiting

UIFA_BUS

LID)(user,INVAuifa.Eout!

g else db_waitind) db_passworf (user, i

ALIESCHECK_ANOM

, VALID)Eout!(user uifa.

ASSWORDRECEIVED_P

∈∃•

∪

→
→

∈

→

=

The above password validation process,
UIFA_RECEIVED_PASSWORD, is executed when the
database agent returns the password requested by
UIFA_ENV as described below. The process executed
after UIFA_RECEIVED_PASSWORD is dependent on
whether the password is valid or not. The password is
validated by checking whether the tuple (user name,
password) received from the database is in the bag
db_waiting. If it is, a VALID message is sent to the user
interface and the CHECK_ANOMALIES process is called
with the (user name, password) tuple removed from the
db_waiting bag and added to the logged_in bag. If the
(user name,password) tuple is not in db_waiting, an
INVALID message is sent to the user interface and the
UIFA_BUS process is called with the (user
name,password) tuple in db_waiting removed.

The following are the processes executed when the
user name and password are validated:

,anomalieslogged_in ,db_waiting

,anomalieslogged_in, db_waiting

,anomalieslogged_in,db_waiting

UIFA_BUS

e {}, elslies if anoma

LIESSEND_ANOMA
G)STOP_PAGINout(PAGER, uifa.I

ALIESCHECK_ANOM

→
≠

→

=

,{}logged_in,db_waiting

{},alogged_in,db_waiting

,Alogged_in,db_waiting

A,alogged_in,db_waiting

 UIFA_BUS fa.Eout!a ui

LIESSEND_ANOMA

LIESSEND_ANOMA fa.Eout!a ui

LIESSEND_ANOMA

→

=

→

∪

=∪

In this process, the anomalies set is checked to see
whether it is non-empty, and if it is, then the process
SEND_ANOMALIES is called. If the anomalies set is
empty, then the UIFA_BUS process is executed. The
SEND_ANOMALIES process sends each of the anomalies
in the anomalies set to the user interface and deletes each
from the set. When the anomalies set is empty, it calls the
UIFA_BUS process again.

4.2 UIFA ENV process

The ENV process for the UIFA reads messages from
the user interface and processes them or passes them on
to other agents as needed. It is defined as:

DULE) (GET_SCHE if msg =

UIFA_ENVSCHEDULE) A,REQUEST,.Iout!(MIF uifa

ssword)er_name,pa (LOGIN,us if msg =
UIFA_ENV assword) ser_name,pfa.pass!(u case ui

sguifa.Ein?mUIFA_ENV

→

→
→=

,command)SC_COMMAND if msg=(

UIFA_ENV) ND,commandE,SC_COMMA.Iout!(FIR uifa

)ENT_REPORT (GET_CURR if msg =

UIFA_ENVT) UEST,REPOR(DBIFA,REQuifa.Iout!

→

→

The above definition for the UIFA_ENV process states
that it reads a message off of the environment channel
uifa.Ein (from the user interface) and stores it in the msg
variable. The process that is executed next is dependent
on the content of the message from the user interface. If it
is a user name and password, then it is sent over the
uifa.pass channel to the UIFA_BUS process, which then
sends the user name and password to the database agent
(see above). The other three possibilities in the case
statement are requests from the user for the current
schedule, a report or a command to send to the spacecraft.
In each of these three cases the message is sent to the

indicated agent over the uifa.Iout channel with the
request.

5. Omissions and race conditions

The following describes some of the omissions and
deadlock conditions we found in LOGOS by specifying it
using CSP.

5.1 Omissions

Due to the prototype nature of LOGOS, there were
many omissions found. The omissions were usually one
of two types:

• What should an agent do when another agent
never responds to a request?

• How long should an agent wait for another agent
to respond to a request?

The following are some samples of omissions from the
pager agent:

• Should the pager agent automatically resubmit a page
if there has been no response within a specified
amount of time, or should this command come from
the user interface agent?

• Should the pager agent change whom they are paging
after an elapsed period of time, and what should that
time interval be? Or, again, should that information
come from the UIFA?

• What happens when the pager agent receives a
request to page someone that it has already been
paged (i.e., the pager has not yet received a request to
stop paging the party that the pager is being
requested to page)? In this situation, the pager agent
can either re-page the party or ignore the request. In
addition, if a party can be paged multiple times, does
the software have to keep track of the number of times
the party was paged or other relevant information?

• Should the pager agent cache specialist pager
numbers and information for a specific amount of
time, or should they always be requested from the
database (even if there is an active, unanswered page
for a specialist)?

• There is nothing specified as to what should be done
if the requested pagee does not exist.

5.2 Race conditions

While specifying the user interface agent, we
discovered that a race condition exists between the
UIFA_RESOLVE_ANOMALY process and the

UIFA_RECEIVED_PASSWORD process. The race
condition can occur if an anomaly occurs at about the
same time a user logs in, but before the user is completely
logged in. The race condition can occur in several ways.
The following scenario illustrates one of them:

1. A user logs in.
2. The user interface passes the user name and

password to the user interface agent (UIFA).
3. UIFA sends the database agent (DBIFA) the user

name, requesting a return of the password.
4. While UIFA is waiting for the DBIFA to send the

password back, the FIRE agent sends UIFA an
anomaly to send to the user.

5. A process in UIFA checks to see whether the user
is logged on, which is not the case, but, before it
can set the variable to indicate an anomaly is
waiting, the process blocks.

6. At this point, the password is received from the
database, and this UIFA process determines that
the password is valid and checks to see whether
there are any anomalies waiting, which is not the
case (because the process in #5 is blocked and has
not set the variable yet), and then sends a valid
login message to the user interface.

7. At this point the process in #5 above becomes
unblocked and continues; it then finishes setting
the variable indicating that an anomaly is waiting,
has the user paged, and then blocks waiting for a
new user to log in.

Although the above situation is by no means fatal
since in the end a user is paged, nevertheless, a user is
paged even though one who could handle the anomaly
immediately is already logged on. In addition, if the
anomaly needed an immediate response, time would be
wasted while the second user responded to the page.

From the above, it is evident that this is an invariant
condition for UIFA. The invariant is that the anomaly-
waiting variable and the user-logged-in variable should
never be set to true at the same time. If this invariant is
violated, then the condition exists that a user is logged in,
the anomaly process has unnecessarily paged a user and
is waiting for that user to login instead of sending the
anomaly to the current user.

This condition can be fixed fairly easily. In each agent
there is a process that executes regularly to do any needed
housekeeping functions. Some code could be added that
checks whether the anomaly-waiting variable is set at the
same time the user-logged-in variable is set and then calls
the appropriate routine to send the anomaly to the user
and unset the anomaly-waiting variable.

Another potential race condition occurs when a user
logs in and enters an incorrect password. When the

database returns the correct password to the UIFA, the
UIFA has in its bag the name of the user and the entered
password. If this password is incorrect, it normally can be
easily deleted, because the element in the bag can be
indexed by the user name. A problem can arise if the
password is incorrect and if, before the database has a
chance to reply, the same user logs in again with a
different password. In this case, when the database
returns the correct password from the first occurrence, it
will not know which (username, password) tuple to delete.

The solution to this problem is also fairly simple. The
message id of the request to the database should be used
as the key and not the username, since the message id is
unique. The message id will also be returned by the
database in the “in-reply-to” field of its message. So
instead of storing the couple (username, password) in
db_waiting, the triple (message id, username, password)
should be used.

6. Conclusion

Our experience to date has shown that even at the level
of requirements, formalization in CSP can help to highlight
undesirable behavior and equally importantly can help to
point out errors of omission. We are currently working on
using formal and semi-formal techniques for specifying
our next generation multi-agent system to check for
possible error conditions (including deadlock) between
components of the agents and between the agents
themselves.

We have found that the results that formal
specifications can provide are extremely helpful, but
developing them is very time intensive, and the results
may not be available until after the project has been
completed (as in the case presented here). We have found
that tools are essential to speeding up this process. We
are currently experimenting with model checkers such as
Spin [3] and the Java PathFinder [1] (for checking existing
Java code for errors). We are also actively researching the
development of other tools that can speed the process of
developing formal specifications and checking these
specifications for errors.

As programming languages such as Java make it easier
to develop concurrent systems, the need to find race
conditions and other concurrency related errors will
become even more important. The only cost-effective way
that has been described for doing this with any assurance
requires the use of formal methods. We believe that the
development of tools that will ease the process of learning
and using formal methods is critically important to the
future of the field of system assurance.

7. Acknowledgements

Our thanks to the LOGOS development team for their
help in us understanding the inner workings of LOGOS.
The development team includes: Walt Truszkowski, Tom
Grubb, Troy Ames, Carl Hostetter, Jeff Hosler, Matt
Brandt, Dave Kocur, Kevin Stewart, Jay Karlin, Victoria
Yoon, Chariya Peterson, and Dave Zock, who are or have
been members of the Goddard Agent Group.

12. References

[1] Havelund, K., Model Checking Java Programs using
Java PathFinder, 1999, To appear in International Journal
on Software Tools for Technology Transfer.

[2] Hinchey, M.G. and Jarvis, S.A., Concurrent Systems:
Formal Development in CSP, McGraw-Hill International
Series in Software Engineering, London and New York,
1995.

[3] Holzmann, H. J, Design and Validation of Computer
Protocols, Prentice Hall Software Series, Englewood
Cliffs, NJ, 1991.

[4] Hoare, C.A.R., Communicating Sequential Processes,
Prentice Hall International Series in Computer Science,
Hemel Hempstead, 1985.

[5] Truszkowski, W., Hallock, H. Agent Technology from
a NASA Perspective. CIA-99, Third International
Workshop on Cooperative Information Agents, Springer-
Verlag, Uppsala, Sweden, 31 July – 2 August 1999.

